彩票之家首页,彩神彩票登录首页大厅,爱游戏体育app如何下载,广东足彩app下载,快3网址登录,正规极速快三,幸运快三每日彩票


首頁
產(chǎn)品系列
行業(yè)應用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當前位置:首頁 > 新聞資訊 > 機器人開發(fā) > 基于深度學習和傳統(tǒng)算法的人體姿態(tài)估計,技術(shù)細節(jié)都講清楚了  
 

基于深度學習和傳統(tǒng)算法的人體姿態(tài)估計,技術(shù)細節(jié)都講清楚了

來源:AI科技大本營      編輯:創(chuàng)澤      時間:2020/5/29      主題:其他   [加盟]

計算機視覺的一大研究熱點是人體姿態(tài)估計,還有很多問題急需解決,比如遮擋,交互等等。在近的CVPR2020里邊也有很多這方面的工作。本文站長主要是想談談基于深度學習的實時多人姿態(tài)估計。


人體姿態(tài)估計要干嘛?

關(guān)于人類活動規(guī)律的研究,必定是計算機視覺L域要關(guān)注的內(nèi)容。其中,人體姿態(tài)估計便是計算機視覺L域現(xiàn)有的熱點問題,其主要任務是讓機器自動地檢測場景中的人“在哪里”和理解人在“干什么”。

隨著信息化時代的迅速發(fā)展,人類每時每刻都在通過多種多樣的手段和途徑獲得海量的可視化圖像數(shù)據(jù),這使得基于自然場景圖像的人姿態(tài)估計研究在現(xiàn)實生活中擁有很多潛在的應用價值。圖1展示了自然場景圖像中人體姿態(tài)估計的研究應用。

Fig.1: 自然場景圖像人體姿態(tài)估計的研究應用

在信息化的時代,視頻監(jiān)控正在銀行、超市以及公安機關(guān)等關(guān)乎人民財產(chǎn)、人身安全的重要場所發(fā)揮著舉足輕重的角色。面對海量的視頻圖像序列,為了及時地制止現(xiàn)場事故的進一步發(fā)生,工作人員需要長時間且精神G度集中地觀察視頻監(jiān)控畫面并對異常事件作出處理。

除了工作人員很難長時間地保持G度警惕外,長期投入大量的人力來監(jiān)測小概率發(fā)生的事件也不是單位機構(gòu)提倡的做法。因此,實現(xiàn)視頻監(jiān)控的智能化成為一種互聯(lián)網(wǎng)時代的必然趨勢。但是,實現(xiàn)智能視頻監(jiān)控的前提條件是讓機器自動地識別視頻圖像序列中的人體姿態(tài),從而進一步分析視頻圖像中人類的行為活動。

這就涉及到了我們下面所要說的人體行為分析了。


人體行為分析又為那般?

人體行為分析理解成為了近幾年研究的熱點之一。在人體行為分析理解的發(fā)展過程中,研究人員攻克了很多技術(shù)上的難關(guān),并形成了一些經(jīng)典算法,但仍有很多尚未解決的問題。從研究的發(fā)展趨勢來看,人體行為分析的研究正由采用單一特征、單一傳感器向采用多特征、多傳感器的方向發(fā)展。而人體姿態(tài)估計作為人體行為識別的一個重要特征,是進行人體行為分析的基礎(chǔ),是人體行為分析L域備受關(guān)注的研究方向之一。

人體姿態(tài)估計是指從圖像中檢測人體各部分的位置并計算其方向和尺度信息。人體行為分析是基于多幀圖像的前后關(guān)系進行分析理解,而人體姿態(tài)識別是針對單幀靜態(tài)圖像進行處理。正確識別出多幀連續(xù)的靜態(tài)圖像的姿態(tài)信息,為實現(xiàn)正確的行為分析理解提供了可能。因此,人體姿態(tài)估計的準確性與實時性直接影響人體行為分析的準確性和實時性,確保實時準確的姿態(tài)識別是進行下一步行為分析的基礎(chǔ)。

現(xiàn)在,我們的人體姿態(tài)估計課題的發(fā)展已越來越貼近實際,例如在步態(tài)分析、人機交互以及視頻監(jiān)控等L域,人體姿態(tài)估計均具有廣泛的應用前景。所以呢,研究人體姿態(tài)估計還是蠻有意思的,好玩 !


當前姿態(tài)估計算法有哪些?

目前主流的人體姿態(tài)估計算法可以劃分為傳統(tǒng)方法和基于深度學習的方法。

基于傳統(tǒng)方法的人體姿態(tài)估計

傳統(tǒng)方法一般是基于圖結(jié)構(gòu)和形變部件模型,設(shè)計2D人體部件檢測器,使用圖模型建立各部件的連通性,并結(jié)合人體運動學的相關(guān)約束不斷優(yōu)化圖結(jié)構(gòu)模型來估計人體姿態(tài)。

其缺點是什么?

First,傳統(tǒng)方法雖然擁有較G的時間效率,但是由于其提取的特征主要是人工設(shè)定的HOG和SHIFT特征,無法充分利用圖像信息,導致算法受制于圖像中的不同外觀、視角、遮擋和固有的幾何模糊性。同時,由于部件模型的結(jié)構(gòu)單一,當人體姿態(tài)變化較大時,部件模型不能準確地刻畫和表達這種形變,同一數(shù)據(jù)存在多個可行的解,即姿態(tài)估計的結(jié)果不,導致傳統(tǒng)方法適用范圍受到很大限制。
Second,另一方面,傳統(tǒng)方法很多是基于深度圖等數(shù)字圖像提取姿態(tài)特征的算法,但是由于采集深度圖像需要使用專業(yè)的采集設(shè)備,成本較G,所以很難適用于所有的應用場景,而且采集過程需要同步多個視角的深度攝像頭以減小遮擋問題帶來的影響,導致人體姿態(tài)數(shù)據(jù)的獲取過程復雜困難。因此這種傳統(tǒng)的基于手工提取特征,并利用部件模型建立特征之間聯(lián)系的方法大多數(shù)是昂貴和低效的。
基于深度學習的人體姿態(tài)估計算法

隨著大數(shù)據(jù)時代的到來,深度學習在計算機視覺L域得到了成功的應用。因此,考慮如何將深度學習用于解決人體姿態(tài)估計問題,是人體姿態(tài)估計L域的學者們繼圖結(jié)構(gòu)模型后所要探索的另一個重點。早期利用深度學習估計人體姿態(tài)的方法,都是通過深度學習網(wǎng)絡(luò)直接回歸出輸入圖像中關(guān)節(jié)點的坐標。

總結(jié)

六階段雙分支網(wǎng)絡(luò)結(jié)構(gòu)在關(guān)節(jié)點預測精度上略G于現(xiàn)有傳統(tǒng)的的人體姿態(tài)估計算法。本次站長采用的算法利用自底向上的思想,先預測出所有骨點位置,并將骨點連接形成圖結(jié)構(gòu),通過圖優(yōu)化實現(xiàn)多人體姿態(tài)估計。算法運行效率方面,由于網(wǎng)絡(luò)同時預測出關(guān)節(jié)點位置和關(guān)節(jié)點之間的空間關(guān)系,為多人姿態(tài)估計算法提供更加稀疏的二分圖,降低二分圖優(yōu)化復雜度而達到了實時的效果。





讓大規(guī)模深度學習訓練線性加速、性能無損,基于BMUF的Adam優(yōu)化器并行化實踐

Adam 算法便以其卓越的性能風靡深度學習領(lǐng)域,該算法通常與同步隨機梯度技術(shù)相結(jié)合,采用數(shù)據(jù)并行的方式在多臺機器上執(zhí)行

音樂人工智能、計算機聽覺及音樂科技

音樂科技、音樂人工智能與計算機聽覺以數(shù)字音樂和聲音為研究對象,是聲學、心理學、信號處理、人工智能、多媒體、音樂學及各行業(yè)領(lǐng)域知識相結(jié)合的重要交叉學科,具有重要的學術(shù)研究和產(chǎn)業(yè)開發(fā)價值

【深度】未來5-10年計算機視覺發(fā)展趨勢為何?

專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國鋒)從計算機視覺發(fā)展歷程、現(xiàn)有研究局限性、未來研究方向以及視覺研究范式等多方面展開了深入的探討

華南理工大學羅晶博士和楊辰光教授團隊發(fā)文提出遙操作機器人交互感知與學習算法

羅晶博士和楊辰光教授團隊提出,遙操作機器人系統(tǒng)可以自然地與外界環(huán)境進行交互、編碼人機協(xié)作任務和生成任務模型,從而提升系統(tǒng)的類人化操作行為和智能化程度

實時識別卡扣成功裝配的機器學習框架

卡扣式裝配廣泛應用于多種產(chǎn)品類型的制造中,卡扣裝配是結(jié)構(gòu)性的鎖定機制,通過一個機器學習框架將人類識別成功快速裝配的能力遷移到自主機器人裝配上。

基于多任務學習和負反饋的深度召回模型

基于行為序列的深度學習推薦模型搭配高性能的近似檢索算法可以實現(xiàn)既準又快的召回性能,如何利用這些豐富的反饋信息改進召回模型的性能

張帆博士與Yiannis Demiris教授團隊提出高效的機器人學習抓取衣服方法

機器人輔助穿衣通常人工的將衣服附在機器人末端執(zhí)行器上,忽略機器人識別衣服抓取點并進行抓取的過程,從而將問題簡化

百度算法大牛35頁PPT講解基于EasyDL訓練并部署企業(yè)級高精度AI模型

百度AI開發(fā)平臺高級研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開發(fā)中的難點,以及針對這些難點,百度EasyDL專業(yè)版又是如何解決的

Technica公司發(fā)布智能霧計算平臺技術(shù)白皮書

SmartFog可以輕松地將人工智能分析微服務部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實現(xiàn)方案,要用下一代人工智能算法來彌補現(xiàn)有解決方案的不足。

深度學習在術(shù)前手術(shù)規(guī)劃中的應用

深度學習對推動術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來計劃手術(shù)程序,而成像對于手術(shù)的成功至關(guān)重要
 
資料獲取
新聞資訊
== 資訊 ==
» 2025基于DeepSeek的詳細規(guī)劃智
» 以DeepSeek為代表的AI在能源行業(yè)
» 人形機器人危險類型及典型示例:機械危險、
» 服務機器人安全方面檢測:機械安全、電氣安
» 北京市人工智能賦能新型工業(yè)化行動方案20
» 服務機器人智能方面檢測:大小腦智能、 肢
» 中國人工智能視覺檢測系統(tǒng)領(lǐng)域TOP10
» 2025年中國具身智能產(chǎn)業(yè)TOP100
» 人形機器人檢測的六個核心專業(yè)維度:智能,
» 人形機器人產(chǎn)業(yè)發(fā)展現(xiàn)狀、市場前景及未來展
» 服務機器人在工業(yè)場景量化效益:能耗降低、
» 服務機器人在酒店樓宇場景量化效益:能耗降
» 2025中國人工智能500強
» 2025年中國人工智能與商業(yè)智能發(fā)展白皮
» 人形機器人檢測認證白皮書2025-技術(shù)特
 
== 機器人推薦 ==
 
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導引機器人  移動消毒機器人  導診機器人  迎賓接待機器人  前臺機器人  導覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導診機器人 
版權(quán)所有 © 創(chuàng)澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

千阳县| 铜川市| 渝中区| 孟州市| 永泰县| 都兰县| 正蓝旗| 红桥区| 河津市| 洱源县| 前郭尔| 普定县| 阳泉市| 安福县| 兰坪| 莎车县| 乐平市| 双桥区| 老河口市| 宁德市| 黎城县| 锦屏县| 宜宾县| 永兴县| 松江区| 卓资县| 嘉定区| 惠州市| 嘉善县| 竹北市| 多伦县| 白城市| 遂溪县| 且末县| 和田县| 龙川县| 博乐市| 红桥区| 和林格尔县| 安阳县| 军事|